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Abstract. We give a (1.796 + ϵ)-approximation for the minimum sum
coloring problem on chordal graphs, improving over the previous 3.591-
approximation by Gandhi et al. [2005]. To do so, we also design the first
PTAS for the maximum k-colorable subgraph problem in chordal graphs.

1 Introduction

We consider a coloring/scheduling problem introduced by Kubicka in 1989 [14].

Definition 1. In the Minimum Sum Coloring (MSC) problem, we are given
an undirected graph G = (V,E). The goal is to find a proper coloring ϕ : V →
{1, 2, 3, . . .} of vertices with positive integers which minimizes

∑
v∈V ϕ(v). In

weighted MSC, each vertex v ∈ V additionally has a weight wv ≥ 0 and the goal
is then to minimize

∑
v∈V wv · ϕ(v).

Naturally, in saying ϕ is a proper coloring, we mean ϕ(u) ̸= ϕ(v) for any edge
uv ∈ E. MSC is often used to model the scheduling of unit-length dependent
jobs that utilize shared resources. Jobs that conflict for resources cannot be
scheduled at the same time. The goal in MSC is then to minimize the average
time it takes to complete a job.

In contrast with the standard graph coloring problem, where we are asked to
minimize the number of colors used, sum coloring is NP-hard on many simple
graph types. Even on bipartite and interval graphs, where there are linear time
algorithms for graph coloring, MSC remains APX-hard [3,10].

In [2], it was shown that if one can compute a maximum independent set
in any induced subgraph of G in polynomial time, then iteratively coloring G
by greedily choosing a maximum independent set of the uncolored nodes each
step yields a 4-approximation for MSC. A series of improved approximations
for other graph classes followed, these are summarized in Table 1. Of particular
relevance for this paper are results for perfect graphs and interval graphs. For
MSC in perfect graphs, the best approximation is µ⋆ ≈ 3.591, the solution to
µ lnµ = µ+1. ForMSC in interval graphs, the best approximation is µ⋆

2 ≈ 1.796.
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Table 1. Known results for sum coloring. The O⋆-notation hides poly(log logn) factors.
Our work appears in bold.

u.b. l.b.

General graphs O⋆(n/ log3 n) [2,6] O(n1−ϵ) [2,7]

Perfect graphs 3.591 [8] APX-hard [3]

Chordal graphs 1.796+ ϵ APX-hard [10]

Interval graphs 1.796 [11] APX-hard [10]

Bipartite graphs 27/26 [15] APX-hard [3]

Planar graphs PTAS [12] NP-hard [12]

Line graphs 1.8298 [13] APX-hard [16]

In this paper, we study MSC in chordal graphs. A graph is chordal if it
does not contain a cycle of length at least 4 as an induced subgraph. Equiv-
alently, every cycle of length at least 4 has a chord - an edge connecting two
non-consecutive nodes on the cycle. Chordal graphs form a subclass of perfect
graphs, so we can color them optimally in polynomial time. But MSC itself
remains APX-hard in chordal graphs [10], as they generalize interval graphs.
The class of chordal graphs is well studied; linear-time algorithms have been
designed to recognize them, to compute maximum independent sets, and to find
minimum colorings, among other things. A comprehensive summary of many fa-
mous results pertaining to chordal graphs can be found in the excellent book by
Golumbic [9]. Chordal graphs also appear often in practice; for example Pereira
and Palsberg study register allocation problems (which can be viewed as a sort
of graph coloring problem) and observe that the interference graphs for about
95% of the methods in the Java 1.5 library are chordal when compiled with a
particular compiler [17].

Our main result is an improved approximation algorithm for MSC in chordal
graphs.

Theorem 1. For any constant ϵ > 0, there is a polynomial-time µ⋆

2 + ϵ ≈
1.796 + ϵ approximation for weighted MSC on chordal graphs.

That is, we can approximate MSC in chordal graphs essentially within the same
guarantee as for interval graphs. Prior to our work, the best approximation in
chordal graphs was the same as in perfect graphs: a 3.591-approximation by
Gandhi et al. [8].

To attain this, we study yet another variant of the coloring problem.

Definition 2. In the weighted Maximum k-Colorable Subgraph (MkCS)
problem, we are given a graph G = (V,E), vertex weights wv ≥ 0, and a positive
integer k. The goal is to find a maximum-weight subset of nodes S ⊆ V such
that the induced subgraph G[S] is k-colorable.
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We also design a polynomial-time approximation scheme (PTAS) for weighted
MkCS in chordal graphs.

Theorem 2. For any ϵ > 0, there is a (1−ϵ)-approximation for weighted MkCS
in chordal graphs.

Prior to our work, the best approximation recorded in literature was a 1/2-
approximation by Chakaravarthy and Roy [4]. Although one could also get a
(1 − 1/e)-approximation by greedily finding and removing a maximum-weight
independent set of nodes for k iterations, i.e., the maximum coverage algorithm.

Organization
We begin with a high-level discussion of our techniques. Then, Section 2 presents
the proof of Theorem 1 assuming one has a PTAS for MkCS in chordal graphs.
Theorem 2 is proven in Section 3.

1.1 Our Techniques

Our work is inspired by the 1.796-approximation for MSC in interval graphs by
Halldórsson, Kortsarz, and Shachnai [11]. They show that if one has an exact
algorithm for MkCS, then by applying it to values of k from a carefully se-
lected geometric sequence and “concatenating” these colorings, one gets a 1.796-
approximation. In interval graphs,MkCS can be solved in polynomial time using
a greedy algorithm. We show that a similar result holds: we show Theorem 1
holds in any family of graphs that admit a PTAS for MkCS and a polynomial
time algorithm for the standard minimum coloring problem. However, we need
to use linear programming techniques instead of a greedy algorithm since their
approach seems to heavily rely on getting exact algorithms for MkCS.

MkCS in Chordal Graphs
In chordal graphs, MkCS is NP-complete, but it can be solved in nO(k) time
[19]. We rely on this algorithm for constant values of k, so we briefly summarize
how it works to give the reader a complete picture of our PTAS.

Their algorithm starts with the fact that chordal graphs have the following
representation. For each chordal graph G = (V,E) there is a tree T with O(n)
nodes of maximum degree 3 plus a collection of subtrees T = {Tv : v ∈ V }, one
for each v ∈ V . These subtrees satisfy the condition that uv ∈ E if and only if
subtrees Tu and Tv have at least one node in common. For a subset S ⊆ V , we
have G[S] is k-colorable if and only if each node in T lies in at most k subtrees
from {Tv : v ∈ S}. The tree T and subtrees T are computed in polynomial
time and then a straightforward dynamic programming procedure is used to
find the maximum k-colorable subgraph. The states of the DP algorithm are
characterized by a node a of T and subtrees S ⊆ T with |S| ≤ k where each
subtree in S includes a.

Our contribution is an approximation for large values of k. It is known that
a graph G is chordal if and only if its vertices can be ordered as v1, v2, . . . , vn
such that for every 1 ≤ i ≤ n, the set N left(vi) := {vj : vivj ∈ E and j < i} is a
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clique. Such an ordering is called a perfect elimination ordering. We consider
the following LP relaxation based on a perfect elimination ordering. We have a
variable xv for every v ∈ V indicating if we should include v in the subgraph.

maximize

{∑
v∈V

wv · xv : xv + x(N left(v)) ≤ k ∀ v ∈ V, x ∈ [0, 1]V

}
.

The natural {0, 1} solution corresponding to a k-colorable induced subgraph
G[S] is feasible, so the optimum LP solution has value at least the size of the
largest k-colorable subgraph of G.

We give an LP-rounding algorithm with the following guarantee.

Lemma 1. Let x be a feasible LP solution. In nO(1) time, we can find a subset
S ⊆ V such that G[S] is k-colorable and

∑
v∈S wv ≥

(
1− 2

k1/3

)
·
∑

v∈V wv · xv.

Theorem 2 then follows easily. If k ≤ 8/ϵ3, we use the algorithm from [19] which
runs in polynomial time since k is bounded by a constant. Otherwise, we run
our LP rounding procedure.

Linear Programming Techniques for MSC
We give a general framework for turning approximations for weighted MkCS
into approximations for MSC.

Definition 3. We say that an algorithm for weighted MkCS is a (ρ, γ) approx-
imation if it always returns a γ · k colorable subgraph with vertex weight at least
ρ ·OPT , where OPT is the maximum vertex weight of any k-colorable subgraph.

For Theorem 1, we only need to consider the case ρ = 1 − ϵ and γ = 1. Still,
we consider this more general concept since it is not any harder to describe and
may have other applications.

We prove the following, where e denotes the base of the natural logarithm.

Lemma 2. Suppose there is a (ρ, γ) approximation for weighted MkCS on
graphs in a class of a graphs where minimum colorings can be found in poly-

nomial time. Then, for any 1 < c < min(e2, 1
1−ρ ), there is a ρ·γ·(c+1)

2·(1−(1−ρ)·c)·ln c -

approximation for MSC for graphs in the same graph class.

Our main result follows by taking γ = 1 and ρ = 1− ϵ. For small enough ϵ, we
then choose c∗ ≈ 3.591 to minimize the expression, resulting in an approximation
guarantee of at most 1.796.

Roughly speaking, we prove Lemma 2 by considering a time-indexed config-
uration LP relaxation for latency-style problems. Configuration LPs have been
considered for MSC in other graph classes, such as line graphs [13]. The config-
urations used in previous work have variables for each independent set. We use a
stronger LP that has variables for each k-colorable subgraph for each 1 ≤ k ≤ n.

Our configuration LP was inspired by one introduced by Chakrabarty and
Swamy for the Minimum Latency Problem (a variant of the Travelling
Salesperson Problem) [5], but is tailored for our setting. For each “time”
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k ≥ 1 we have a family of variables, one for each k-colorable subgraph, indicating
if this is the set of nodes that should be colored with integers ≤ k. This LP can
be solved approximately using the (ρ, γ)-approximation for MkCS, and it can
be rounded in a manner inspired by [5,18].

Note that Theorem 2 describes a (1− ϵ, 1)-approximation for MkCS for any
constant ϵ > 0. If we had a (1, 1 + ϵ)-approximation then the techniques in [11]
could be easily adapted to prove Theorem 1. But these techniques don’t seem
to apply when given MkCS approximations that are inexact on the number of
nodes included in the solution.

2 An LP-Based Approximation Algorithm for MSC

As mentioned earlier, our approach is inspired by a time-indexed LP relaxation
for latency problems introduced by Chakrabarty and Swamy [5]. Our analysis
follows ideas presented by Post and Swamy who, among other things, give a
3.591-approximation for the Minimum Latency Problem [18] using a config-
uration LP.

2.1 The Configuration LP

For a value k ≥ 0 (perhaps non-integer), Ck denotes the vertex subsets S ⊆ V
such that G[S] can be colored using at most k colors. For integers 1 ≤ k ≤ n and
each C ∈ Ck, we introduce a variable zC,k that indicates if C is the set of nodes
colored with the first k integers. We also use variables xv,k to indicate vertex v
should receive color k. We only need to consider n different colors since no color
will be “skipped” in an optimal solution.

minimize:
∑
v∈V

n∑
k=1

wv · k · xv,k (LP-MSC)

subject to:

n∑
k=1

xv,k = 1 ∀ v ∈ V (1)∑
C∈Ck

zC,k ≤ 1 ∀ 1 ≤ k ≤ n (2)

∑
C∈Ck:v∈C

zC,k ≥
∑
k′≤k

xv,k′ ∀ v ∈ V, 1 ≤ k ≤ n (3)

x, z ≥ 0

Constraint (1) says each vertex should receive one color, constraint (2) en-
sures we pick just one subset of vertices to use the first k colors on, and constraint
(3) enforces that each vertex colored by a value less than or equal to k must be
in the set we use the first k colors on.

Recall that this work is not the first time a configuration LP has been used
for MSC. In [13], the authors consider one that has a variable xC,k for every
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independent set C, where the variable models that C is the independent set used
at time t. Our approach allows us to prove better bounds via LP rounding, but
it has the stronger requirement that in order to (approximately) solve our LP,
one needs to (approximately) solve the MkCS problem, rather than just the
maximum independent set problem.

Let OPT denote the optimal MSC cost of the given graph and OPTLP

denote the optimal cost of (LP-MSC). Then OPTLP ≤ OPT simply because
the natural {0, 1} solution corresponding to OPT is feasible for this LP.

At a high level, we give a method to solve this LP approximately by using
the approximation for MkCS to approximately separate the constraints of the
dual LP, which is given as follows.

maximize:
∑
v∈V

αv −
n∑

k=1

βk (DUAL-MSC)

subject to: αv ≤ wv · k +

n∑
k̂=k

θv,k̂ ∀ v ∈ V, 1 ≤ k ≤ n (4)

∑
v∈C

θv,k ≤ βk ∀ 1 ≤ k ≤ n,C ∈ Ck (5)

β, θ ≥ 0 (6)

Note (DUAL-MSC) has polynomially-many variables. We approximately
separate the constraints in the following way. For values ν ≥ 0, ρ ≤ 1, γ ≥ 1, let
D(ν; ρ, γ) denote the following polytope:{
(α, β, θ) : (4), (6),

∑
v∈C

θv,k ≤ βk ∀ 1 ≤ k ≤ n ∀ C ∈ Cγ·k,
∑
v

αv −
1

ρ
·
∑
k

βk ≥ ν

}

Lemma 3. If there is a (ρ, γ)-approximation for MkCS, there is also a polynomial-
time algorithm A that takes a single value ν plus values (α, β, θ) for the variables
of (DUAL-MSC) and always returns one of two things:

– A (correct) declaration that (α, β/ρ, θ) ∈ D(ν; 1, 1).
– A hyperplane separating (α, β, θ) from D(ν; ρ, γ).

Proof. First, check that (4), (6), and
∑

v αv − 1
ρ ·

∑
k βk ≥ ν hold. If not, the

violated constraint gives a hyperplane separating (α, β, θ) from D(ν; ρ, γ). Then,
for each k, we run the MkCS (ρ, γ)-approximation on the instance with vertex
weights θv,k, v ∈ V . If this finds a solution with weight exceeding βk, we return
the corresponding constraint as a separating hyperplane. Otherwise, we know
that the maximum possible weight of a k-colorable subgraph is at most βk/ρ. If
the latter holds for all k, then (α, β/ρ, θ) ∈ D(ν; 1, 1).

Lemma 3.3 from [5] takes such a routine and turns it into an approximate LP

solver. The following is proven in the exact same manner where we let LP(ρ,γ)

be the same as (LP-MSC), except Ck is replaced by Cγ·k in both (2) and (3) and
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the right-hand side of (2) is replaced by 1/ρ. For the sake of space, we provide
only a quick overview of the proof below the statement.

Lemma 4. Given a (ρ, γ)-approximation for MkCS, we can find a feasible so-

lution (x, z) to LP(ρ,γ) with cost at most OPTLP in polynomial time.

As a reminder, here OPTLP is the optimum value of (LP-MSC) itself.
Roughly speaking, Lemma 4 is obtained as follows. First, for any ν, we can

run the ellipsoid method using the approximate separation oracle. It will either
generate enough constraints to certify D(ν; ρ, γ) = ∅ or it will eventually find
a point (α, β, θ) ∈ D(ν; 1, 1). A binary search can be used to find the largest ν
for which D(ν; ρ, γ) is not certified to be empty. The constraints produced by
the ellipsoid method can be used to determine a polynomial-size set of variables
that need to be considered in LP(ρ,γ) to get a solution with value ≤ OPT . See
[5] for details.

2.2 The Rounding Algorithm and Analysis

The rounding algorithm is much like that in [11] in that it samples k-colorable
subgraphs for various values of k in a geometric sequence and concatenates these
colorings to get a coloring of all nodes. For convenience, let zC,k = zC,⌊k⌋ for any
real value k ≥ 0.

Algorithm 1 MSCRound(G)

find a solution (x, z) to LP(ρ,γ) with value ≤ OPT using Lemma 4
if necessary, increase z∅,k until

∑
C∈Cγ·k

zC,k = 1/ρ for each k

let 1 < c < min(e2, 1/(1− ρ)) be a constant we will optimize later
let h = cΓ be a random offset where Γ is sampled uniformly from [0, 1)
j ← 0
k ← 0 ▷ The next color to use
while G ̸= ∅ do

kj ← h · cj
k′
j ← min{n, ⌊kj⌋}

choose C randomly from Cγ·k′
j
with probability according to the LP values zC′,k′

j
·ρ

for C′ ∈ Cγ·k′
j

color C with ⌊γ · k′
j⌋ colors, call the color classes C1, C2, . . . , C⌊γ·k′

j⌋

randomly permute the color classes, let C′
1, C

′
2, . . . , C

′
⌊γ·k′

j⌋
be the reordering

finally, assign nodes in C′
i color k+ i for each 1 ≤ i ≤ ⌊γ ·k′

j⌋ in the final solution
k ← k + ⌊γ · k′

j⌋
G← G− C
j ← j + 1

end while

Note that nodes colored during iteration j get assigned colors at most γ ·
(k0 + k1 + . . . + kj) and the expected color of such a node is at most γ · (k0 +
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k1 + . . .+ kj−1 + (kj +1)/2). The number of iterations is O(log n) because each
vertex will appear in each γ ·n coloring, as this is the largest color considered in
LP(ρ,γ).

We note that despite our approach following the main ideas of the algorithm
and analysis for minimum latency given in [18], there are some key details that
change. In [18], each iteration of the algorithm produces a tree, which is then
doubled and shortcutted to produce a cycle with cost at most double the tree.
While we randomly permute the colors in our coloring, they randomly choose
which direction to walk along the cycle. For a tree with cost k, this gives an
expected distance of k for each node. We save a factor of 2 because we do not
have a doubling step, but our average color is k+1

2 as opposed to k
2 . Some extra

work is required in our analysis to account for the extra 1
2 on each vertex.

Let pv,j be the probability that vertex v is not colored by the end of iteration
j. For j < 0, we use pv,j = 1 and kj = 0. Finally, for v ∈ V , let ϕ(v) denote the
color assigned to v in the algorithm.

The following is essentially Claim 5.2 in [18], with some changes based on
the differences in our setting as outlined above.

Lemma 5. For a vertex v,

E[ϕ(v)|h] ≤ γ

2
· c+ 1

c− 1
·
∑
j≥0

pv,j−1 · (kj − kj−1) + γ(
1

2
− h

c− 1
)

Proof. There are at most γ · kj colors introduced in iteration j. They are per-
muted randomly, so any vertex colored in iteration j has color, in expectation,
at most γ · (kj + 1)/2 more than all colors used in previous iterations. That is,
the expected color of v if colored in iteration j is at most

γ

(
k0 + k1 + . . .+ kj−1 +

kj + 1

2

)
≤ γ

(
h ·

(
cj − 1

c− 1
+

cj

2

)
+

1

2

)
= γ

(
kj
2

· c+ 1

c− 1
+

1

2
− h

c− 1

)
,

where we have used ki = h · ci and summed a geometric sequence.
The probability v is colored in iteration j is pv,j−1 − pv,j , so the expected

color of v is bounded by

γ

2
· c+ 1

c− 1
·

∑
j≥0

(pv,j−1 − pv,j) · kj

+ γ

(
1

2
− h

c− 1

)
.

By rearranging, this is what we wanted to show.

For brevity, let yv,j =
∑

k≤kj
xv,k denote the LP coverage for v up to color

kj . The next lemma is essentially Claim 5.3 from [18], but the dependence on ρ
is better in our context3.
3 We note [18] does have a similar calculation in a single-vehicle setting of their prob-
lem whose dependence is more like that in Lemma 6. They just don’t have a specific
claim summarizing this calculation that we can reference.
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Lemma 6. For any v ∈ V and j ≥ 0, we have pv,j ≤ (1−yv,j)·ρ+(1−ρ)·pv,j−1.

Proof. If v is not covered by iteration j, then it is not covered in iteration j itself
and it is not covered by iteration j − 1, which happens with probability

pv,j−1 ·

1−
∑

C∈Cγ·kj
:v∈C

ρ · zC,kj

 ≤ pv,j−1 · (1− ρ · yv,j)

= pv,j−1 · ρ · (1− yv,j) + pv,j−1 · (1− ρ).

Note that the first inequality follows from constraint (3) and the definition of
yv,j . The lemma then follows by using pv,j−1 ≤ 1 and yv,j ≤ 1 to justify dropping
pv,j−1 from the first term.

From these lemmas, we can complete our analysis. Here, for v ∈ V , we let
colv =

∑n
k=1 k · xv,k denote the fractional color of v, so the cost of (x, z) is∑

v∈V wv · colv. The following lemma is essentially Lemma 5.4 in [18] but with
our specific calculations from the previous lemmas.

Lemma 7. For any v ∈ V , we have E[ϕ(v)] ≤ ρ·γ·(c+1)
2·(1−(1−ρ)·c)·ln c · colv.

Proof. For brevity, let ∆j = kj − kj−1. We first consider a fixed offset h. Let
A =

∑
j≥0 pv,j−1 ·∆j and recall, by Lemma 5, that the expected color of v for

a given h is at most γ
2 · c+1

c−1 ·A+ γ( 12 − h
c−1 ).

Note ∆j = c ·∆j−1 for j ≥ 2 and ∆0 +∆1 = c ·∆0. So from Lemma 6,

A ≤
∑
j≥0

ρ · (1− yv,j) ·∆j + (1− ρ)
∑
j≥0

pv,j−2 ·∆j

=
∑
j≥0

ρ · (1− yv,j) ·∆j + c · (1− ρ) ·A.

Rearranging and using c < 1/(1− ρ), we have that

A ≤ ρ

1− c · (1− ρ)
·
∑
j≥0

(1− yv,j) ·∆j .

For 1 ≤ k ≤ n, let σ(k) be kj for the smallest integer j such that kj ≥ k.
Simple manipulation and recalling yv,j =

∑
k≤kj

xv,j shows
∑

j≥0(1−yv,j)·∆j =∑n
k=1 σ(k) · xv,k.
The expected value of σ(k) over the random choice of h, which is really over

the random choice of Γ ∈ [0, 1), can be directly calculated as follows where j is
the integer such that k ∈ [cj , cj+1).

Eh[σ(k)] =

∫ logc k−j

0

cΓ+j+1dΓ +

∫ 1

logc k−j

cΓ+jdΓ

=
1

ln c
(clogc k+1 − cj+1 + cj+1 − clogc k) =

c− 1

ln c
· k.
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We have just shown Eh[
∑

j≥0(1−yv,j) ·∆j ] =
c−1
ln c

∑
k≥0 k ·xv,k = c−1

ln c · colv. So,
we can now bound the unconditional color Eh[ϕ(v)] using our previous lemmas.

Eh[ϕ(v)] =
γ

2
· c+ 1

c− 1
·Eh[A] + γ(

1

2
−Eh[h]/(c− 1))

≤ ρ · γ · (c+ 1)

2 · (1− (1− ρ) · c) · ln c
· colv + γ

(
1

2
−Eh[h]/(c− 1)

)
=

ρ · γ · (c+ 1)

2 · (1− (1− ρ) · c) · ln c
· colv + γ

(
1

2
− 1

ln c

)
≤ ρ · γ · (c+ 1)

2 · (1− (1− ρ) · c) · ln c
· colv

The first equality and inequality follow from linearity of expectation and known
bounds on E[ϕ(v)|h] and A. The second equality follows from the fact that

Eh[h] =
∫ 1

0
cΓ dΓ = c−1

ln c , and the last inequality is due to the fact that c < e2

by assumption.

To finish the proof of Lemma 2, observe the expected vertex-weighted sum
of colors of all nodes is then at most

ρ · γ · (c+ 1)

2 · (1− (1− ρ) · c) · ln c
·
∑
v∈V

wv · colv ≤ ρ · γ · (c+ 1)

2 · (1− (1− ρ) · c) · ln c
·OPT.

Theorem 1 then follows by combing the (1 − ϵ, 1) MkCS approximation (de-
scribed in the next section) with this MSC approximation, choosing c ≈ 3.591,
and ensuring ϵ is small enough so c < 1/ϵ.

We note Algorithm 1 can be efficiently derandomized. First, there are only
polynomially-many offsets of h that need to be tried. That is, for each kj , we
can determine the values of h that would cause ⌊γ · kj⌋ to change and try all
such h over all j. Second, instead of randomly permuting the color classes in a
γ ·kj-coloring, we can order them greedily in non-increasing order of total vertex
weight.

3 A PTAS for MkCS in Chordal Graphs

We first find a perfect elimination ordering of the vertices v1, v2, . . . , vn. This
can be done in linear time, e.g., using lexicographical breadth-first search [9].
Let N left(v) ⊆ V be the set of neighbors of v that come before v in the ordering,
so N left(v) ∪ {v} is a clique. Recall that we are working with the following LP.
The constraints we use exploit the fact that a chordal graph is k-colorable if and
only if all left neighbourhoods of its nodes in a perfect elimination ordering have
size at most k − 1.
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maximize:
∑
v∈V

wv · xv (K-COLOR-LP)

subject to: xv + x(N left(v)) ≤ k ∀ v ∈ V (7)

x ∈ [0, 1]V

Let OPTLP denote the optimal LP value and OPT denote the optimal so-
lution to the problem instance. Of course, OPTLP ≥ OPT since the natural
{0, 1} integer solution corresponding to a k-colorable subgraph of G is a feasible
solution.

We can now give a rounding algorithm as follows.

Algorithm 2 MCSRound(G, k)

let 0 ≤ f(k) ≤ 1 be a value we will optimize later
find a perfect elimination ordering v1, v2, . . . , vn for G
let x be an optimal feasible solution to (K-COLOR-LP)
form S′ by adding each v ∈ V to S′ independently with probability (1− f(k)) · xv.
S ← ∅
for v ∈ {v1, v2, . . . , vn} do

if v ∈ S′ and S ∪ {v} is k-colorable, add v to S
end for
return S

3.1 Analysis

Observe that when we consider adding some v ∈ S′ to S, S ∪ {v} is k-colorable
if and only if |S ∩ N left(v)| ≤ k − 1. This is easy to prove by noting that the
restriction of a perfect elimination ordering of G to a subset S yields a perfect
elimination ordering of G[S]. Because we consider the nodes v according to a per-
fect elimination ordering of G, by adding v the only possible left-neighbourhood
of a node that could have size ≥ k is N left(v) itself.

We bound the probability that we select at least k vertices from N left(v).
The second moment method is used so that derandomization is easy. Let Yu

indicate the event that u ∈ S′. Then E[Y 2
u ] = E[Yu] = (1− f(k)) · xu. Fix some

vertex v. Let Y =
∑

u∈N left(v) Yu. By constraint (7), we have

E[Y ] =
∑

u∈N left(v)

(1− f(k)) · xu ≤ (1− f(k)) · k.

And since each Yu is independent, we have again by constraint (7) that

Var[Y ] =
∑

u∈N left(v)

Var[Yu] =
∑

u∈N left(v)

(
E[Y 2

u ]−E[Yu]
2
)
≤

∑
u∈N left(v)

E[Y 2
u ] ≤ k.
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We are interested in

Pr[Y ≥ k] ≤ Pr[|Y − E[Y ]| ≥ f(k) · k].

By Chebyshev’s inequality,

Pr[|Y − E[Y ]| ≥ f(k) · k] ≤ Var[Y ]

f(k)2 · k2
≤ k

f(k)2 · k2
=

1

f(k)2 · k
.

From this, we find that the probability we actually select vertex v is at least

Pr[Yv∧ (Y ≤ k−1)] = Pr[Yv] ·Pr[Y ≤ k−1] ≥ (1−f(k)) ·xv ·
(
1− 1

f(k)2 · k

)
.

The first equality is justified because Y only depends on Yu for u ̸= v, so these
two events are independent.

Choosing f(k) = k−1/3 results in v ∈ S with probability at least xv · (1− 2 ·
k−1/3). By linearity of expectation, the expected value of S is at least (1 − 2 ·
k−1/3) ·

∑
v∈V wv · xv.

The PTAS for MkCS in chordal graphs is now immediate. For any constant
ϵ > 0, if k ≥ 8/ϵ3, then we run our LP rounding algorithm to get a k-colorable
subgraph with weight at least (1 − ϵ) · OPTLP . Otherwise, we run the exact
algorithm in [19], which runs in polynomial time since k is bounded by a constant.

It is desirable to derandomize this algorithm so it always finds a solution
with the stated guarantee. This is because we use it numerous times in the
approximate separation oracle for (DUAL-MSC). Knowing it works all the
time does not burden us with providing concentration around the probability we
successfully approximately solve LP(ρ,γ) as in Lemma 4. We can derandomize
Algorithm 2 using standard techniques, since it only requires that the variables
Yu, u ∈ V be pairwise-independent (in order to bound Var[Y ]).

4 Conclusion

It is natural to wonder if MSC admits a better approximation in perfect graphs.
Unfortunately, our techniques do not extend immediately. In [1], Addario-Berry
et al. showed MkCS is NP-hard in a different subclass of perfect graphs than
chordal graphs. Their proof reduces from the maximum independent set problem
and it is easy to see it shows MkCS is APX-hard in the same graph class if
one reduces from bounded-degree instances of maximum independent set.

However, our approach, or a refinement of it, may succeed if one has good
constant approximations for MkCS in perfect graphs. Note that MkCS can be
approximated within 1 − 1/e in perfect graphs simply by using the maximum
coverage approach. That is, for k iterations, we greedily compute a maximum
independent set of nodes that are not yet covered. This is not sufficient to get an
improved MSC approximation in perfect graphs using Lemma 2. Lemma 2 can
be used if we get a sufficiently-good (≈ 0.704) approximation for MkCS. As a
starting point, we ask if there is a ρ-approximation for MkCS in perfect graphs
for some constant ρ > 1− 1/e.
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