
Decision Tree Clustering
Problem ID: decisiontreeclusters

Time limit: 5 seconds

Given a collection of points P in the plane, your goal is to cluster them using a simple-to-follow algorithm that
any human can easily execute. That is, the clustering will be performed by a decision tree T , which is a rooted tree
with the following properties:

• T is a binary tree, each non-leaf node has precisely two children which we denote as the left child and the right
child.

• Each non-leaf node comes with a statement of the form x ≤ C or y ≤ C where C is some given value.

Using this decision tree, we cluster the points in P as follows: each pi ∈ P starts at the root of T . The corre-
sponding statement x ≤ C or y ≤ C is then evaluated using the x- or y-value of the point pi. If the statement is true,
we move to the left child of this node, otherwise we move to the right child. In this way, all points in P are partitioned
between the leaves of T .

On one hand, we want the clustering to be good, i.e. to put similar points in a group together. On the other hand, it
can be a bit expensive to evaluate the statements at non-leaf nodes. Each point pi ∈ P comes with an evaluation cost
ci which is the cost of evaluating a statement at a non-leaf node for point pi.

If point pi is evaluated ki times in the decision tree before it reaches a leaf, its total evaluation cost is then ci ·ki. For
each leaf node ℓ, the cost of the corresponding “cluster” is the boundary length of the smallest axis-parallel bounding
box of the points in that cluster: call this value b(ℓ).

Your job is to design a decision tree T for the given point set P to minimize:∑
pi∈P

ci · ki +
∑

ℓ: leaf of T

b(ℓ).

For example, the last sample input below is solved optimally by the following decision tree:

x <= 0

y <= 50 x <= 120

A B C D

true

true true

false

falsefalse

Each point will pass through two decision tree nodes (i.e. is evaluated twice) as it proceeds down to a leaf so in
total they pay 2 · 30+ 2 · 30+ 2 · 30+ 2 · 30+ 2 · 60+ 2 · 60 = 480 toward the cost of the clustering. The four leaves
correspond to the partitioning:

A = {(−115, 0)}, B = {(−109, 119), (−119, 109)}, C = {(100, 111), (110, 100)}, D = {(200, 105)}

The perimiters of the smallest axis-parallel bounding boxes of these four clusters are, respectively, 0, 40, 42, 0. So the
total cost of this decision tree is 480 + 40 + 42 = 562.

Input
The first line of input contains a single integer N (1 ≤ N ≤ 40) indicating the number of points in the set P . The next
N lines describe the points in P where the ith such line is for point pi ∈ P and is given by three values xi, yi, ci (all
between −109 and 109, inclusive). No two points have the same x-value and no two points have the same y-value.

Output
Output a single integer denoting the minimum possible cost of a decision tree to cluster the points.

Sample Input 1 Sample Output 1

4
0 0 1
1 1 1
2 2 1
10 10 1

8

Sample Input 2 Sample Output 2

4
0 0 100
1 1 1
2 2 1
10 10 1

40

Sample Input 3 Sample Output 3

7
0 0 1
1 1 1
2 2 1
3 3 1
4 4 1
5 5 1
6 6 1

20

Sample Input 4 Sample Output 4

2
-2 1 6
2 -1 5

11

Sample Input 5 Sample Output 5

6
100 111 30
110 100 30
-109 119 30
-119 109 30
-115 0 60
200 105 60

562

Max Cut Min Flow
Problem ID: maxcutminflow

Time limit: 3 seconds

On opposite day, you try to prove some theorems that are the opposite of known theorems. Today, you try to prove
the "max cut / min flow" theorem.

Well, min flow is simple: it’s always 0.
What about max cut? An s, t cut is just a subset of nodes C containing s but not t. The value of the cut C is the

number of edges having precisely one endpont in C.
Oh, your algorithms textbook says that is NP-hard to compute a maximum s, t cut? Nevermind, opposite day

theorems don’t seem to work.
Anyway, you liked the max cut problem so much you want to solve it on simpler graphs. At first you thought of

trees, but then you decided they are far too simple. You will solve the max cut problem on trees with one extra edge.
Given a tree with an extra edge G and given distinct nodes s, t in the graph, what is the maximum possible value

of an s, t cut?

Input
The first line of input contains a single integer 3 ≤ N ≤ 100, 000 indicating the number of vertices in G. The
following N lines each contain two integers u and v (1 ≤ u, v ≤ N, u ̸= v) indicating there is an edge connecting u
and v in G.

It is guaranteed that all edges are distinct and the resulting graph is connected.
The last line of input contains two integers s and t (1 ≤ s, t ≤ N, s ̸= t), giving the vertices you want to find a

max cut for.

Output
For each test case, output a single integer giving the maximum possible value of an s, t cut.

Sample Input 1 Sample Output 1

3
1 2
2 3
3 1
1 3

2

Sample Input 2 Sample Output 2

6
1 2
2 3
3 4
4 1
5 1
6 2
5 6

6

Sample Input 3 Sample Output 3

6
1 2
2 3
3 4
4 1
5 1
6 2
1 6

5

Sample Input 4 Sample Output 4

5
1 2
2 3
3 1
4 1
5 2
4 5

4

Help! My Pizza Is Too Big!
Problem ID: pizzatoobig
Time limit: 5 seconds

Due to a clerical error, my local pizza place sent me a 14’ diameter pizza instead of a 14” pizza. They were kind
enough to not charge me for the difference, but I’ve still got to figure out if I can fit it in my dining room! Can you
help me out?

My local pizza place specializes in atomically-thin pizzas, so you can assume the pizza has no depth. Given three
dimensions of my cuboid dining room, can you tell me the largest pizza that would fit?

Input
The first line of input contains a single integer 1 ≤ N ≤ 1000 indicating the number of test cases. The next N lines
each contain three integers l, w, and h on a single line, where 1 ≤ l ≤ 100000000, 1 ≤ w ≤ 100000000, and,
1 ≤ h ≤ 100000000 are the length, width, and height of the dining room.

Output
For each test case, output a single line with the diameter of the largest pizza that would fit in the dining room. Your
answer will be considered correct if it is within an absolute or relative error of 10−6.

Sample Input 1 Sample Output 1

2
3 4 5
154 148 96

5.000000000000
155.8301164052

Power Curve
Problem ID: powercurve
Time limit: 5 seconds

A new rouge-like was just released–the goal is to survive for S seconds. The game consists of many unique items that
give the player P additional power while taking T time to equip, as well as various enemies that gain strength at a
constant rate of E power each second.

Although the player can defend themselves while equipping an item, they will not gain any power until the item is
fully equipped. The player can equip any combination of items they desire, but at any point in time only one item may
be in the process of being equipped.

Despite the playerbase expressing much joy, the developers are worried their game may be too hard! In an attempt to
make the game easier, the player now begins with an equipped item giving exactly 50 power. To ensure this buff was
sufficient, you must check if there exists some path through each game that is ‘easy’.

An ‘easy’ path is a sequence of items such that if the player equips items in sequence order, their power level never
falls below the enemy power curve!

If an ‘easy’ path exists, output ‘EASY’; otherwise, output ‘BUFF’.

Input
The first line of input contains three integers N(1 ≤ N ≤ 100, 000), the amount of items, E(1 ≤ E ≤ 50), the
enemies rate of power growth, and S(1 ≤ S ≤ 10, 000, 000), the amount of seconds that must pass to win.

Each of the remaining N lines describe a single item. An item is specified by two integers P, T (1 ≤ P, T ≤ 1000),
indicating the power an item will give once equiped, and the time it takes to equip respectively.

Output
Output a single string, either ‘EASY’ or ‘BUFF’, depending on if there exists an ‘easy’ path through the game.

Sample Input 1 Sample Output 1

4 3 34
35 12
30 9
25 13
50 20

EASY

Sample Input 2 Sample Output 2

5 5 25
21 10
31 6
25 12
17 7
26 8

BUFF

The Cost is Correct
Problem ID: thecostiscorrect

Time limit: 3 seconds

You have won a spot on the famous game show “The Cost is Correct”. On this show, you are presented with a
series of briefcases in a known order. For the i’th briefcase, there is some promised amount of money vi in it. But
the briefcase only has that amount of money with probability pi ∈ [0, 1]. With probability 1 − pi, the briefcase is
completely empty.

When you are presented with a briefcase, you are allowed to see how much money is inside (i.e. if it is empty or
not). After this, you must either choose to take the money, or discard the briefcase and continue playing. If you take
the money, the game is over and you win that amount of money. If you discard the briefcase, the game continues and
you may not later return to the discarded briefcase.

If you do not accept any briefcase after seeing all of them, you win $0.
You know the order you will be presented the briefcases in along with their vi and pi values. You wish to find the

expected amount of money you will earn if you play perfectly.

Input
The first line of input contains a single integer N (1 ≤ N ≤ 100, 000) indicating the number of briefcases. The next
N lines each contain one integer and one real number. The i’th of which contains vi and pi describing the i’th suitcase
you will see (1 ≤ vi ≤ 100, 000, 0 ≤ pi ≤ 1).

All real numbers are given with exactly 6 digits of precision after the decimal.

Output
Output a single floating-point value indicating the maximum expected value you can gain if you play perfectly. Your
answer will be considered correct if it is within an absolute or relative error of 10−6 from the correct answer.

Sample Input 1 Sample Output 1

3
1 0.900000
2 0.500000
3 0.100000

1.1500000000

Sample Input 2 Sample Output 2

3
1 0.500000
1 0.500000
1 0.500000

0.8750000000

Sample Input 3 Sample Output 3

2
1 1.000000
1000 0.001000

1.0000000000

Sample Input 4 Sample Output 4

2
1000 0.001000
1 1.000000

1.9990000000

Treehouse
Problem ID: treehouse
Time limit: 5 seconds

In Alice’s backyard, there is a large tree with some bridges (at most 10) built between nodes of the tree. Alice can get
around the tree either by climbing along branches or by walking across bridges. To help her navigate around the tree
quickly, she would like to know what the lengths of the shortest paths are between some pairs of nodes on the tree.
Can you help her out?

Input
The first line of input contains three integers M (1 ≤ M ≤ 105) the number of branches, K (1 ≤ K ≤ 10), the
number of bridges, and Q (1 ≤ Q ≤ 105), the number of shortest path queries.

The next M lines each contain two integers s and t (1 ≤ s < t ≤ M + 1) indicating a branch between nodes s
and t.

The next K lines each contain two integers s and t (1 ≤ s < t ≤ M + 1) indicating a bridge between nodes s and
t.

The next Q lines each contain two integers s and t (1 ≤ s < t ≤ M + 1) indicating that Alice would like to know
the shortest path between nodes s and t (utilizing branches, bridges, or both).

It is guaranteed that between any two nodes there is at most one branch or bridge. Furthermore, the branches form
a tree, i.e., if we ignore the bridges and use only branches to get around, there is exactly one path between any two
nodes.

Output
For each of the Q queries (in the same order they appear in the input), output a single integer indicating the total length
of the shortest path between the endpoint nodes (s and t) of the query. The length of a path is the total number of
branches and bridges that it crosses.

Sample Input 1 Sample Output 1

3 1 2
1 2
2 3
2 4
3 4
3 4
1 4

1
2

Sample Input 2 Sample Output 2

6 2 4
1 2
2 3
1 4
4 5
1 6
6 7
3 5
5 7
1 5
3 7
2 6
2 7

2
2
2
3

